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ABSTRACT

The problem of turning rate guidance and control for

autonomous vehicles is analyzed. Control design is based on

the dynamic equations of motion for lateral motions, sway and

yaw, while guidance design is based on the kinematics.

Analytical conditions are derived that enable the two schemes

to operate simultaneously without loss of stability. The

results are verified by direct numerical integrations of the

equations of motion.
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I. INTRODUCTION

Autonomous vehicles that are suitable for nse in both

naval and commercial operations, have unique mission

requirements and dynamic characteristics. In particular, they

are required to be highly maneuverable and very responsive as

they operate in obstacle avoidance and object recognition

tasks. The need therefore, arises to maintain accurate path

keeping in confined spaces under the influence of steady and

time varying external excitation. The primary vehicle

guidance system is based on heading or turning rate commands

that are generated based on a specified geographical sequence

of desired way points. These guidance commands are then

passed to the vehicle controller which attempts to deliver the

commanded heading and/or heading rate of change by an

appropriate use of the vehicle control surfaces [Ref.1]. For

vehicle operations in confined spaces the way point sequence

must be very dense so that satisfactory path accuracy is

maintained.

One efficient way of maneuvering through a given way point

sequence is by using a line of sight guidance law which

commands a heading angle that is directly related to the line

of sight angle between the vehicle position and a desired

destination point. The vehicle controller is then an

orientation control law which delivers the commanded heading.
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Previous studies [Ref.2], have demonstrated that this

scheme is guaranteed stable only if the way point separation

is above some critical value. This conclusion is true

regardless of the particular form of the line of sight

guidance or the heading control law used. In this work we

analyze the turning rate guidance and control problem where

the guidance law demands a specific yaw rate response from the

controller. A linear state feedback with a feedforward term

[Ref.3], control law is used, while two different guidance

schemes are considered. The first is a cross track error

guidance law which is very popular in land based robotic

applications [Ref.4]. The second is a proportional guidance

law which is based on the line of sight angle between the

vehicle and a target point. Stability analysis is performed

and numerical integrations are used to confirm the theoretical

results. All numerical computations in this work are

performed for the Naval Postgratuate School autonomous

vehicle, for which a complete set of geometric properties and

hydrodynamic characteristics is available [Ref.5].
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II. EQUATIONS OF MOTION

Restricting our attention to the horizontal plane, the

mathematical model consists of the nonlinear sway

(translational motion parallel to the vehicle longitudinal

axis) and yaw (rotational motion about the vertical axis)

equations of motion. In a moving coordinate frame fixed at

the vehicle's geometrical center (see Fig.1), Newton's

equations of motion are:

m(iu+r+xt) =Y (1)

IZtf +mx0 (0 + ur) N, (2)

where m is the mass of the vehicle , I. its moment of inertia

with respect to the vertical axis, u the forward velocity, x,

the coordinate of the vehicle center of gravity with respect

to its centroid, A and r are the relative sway and yaw

velocities of the moving vehicle with respect to the water;

and Y, N represent the total excitation sway force and yaw

moment, respectively.

Following standard vehicle maneuvering assumptions, these

forces can be expressed as the sum of quadratic drag terms and

first order polynomials in v and r with constant coefficients.

In this way the nonlinear equations of motion in the

horizontal plane become

3



m(vu ur+xGf) =Yt÷+Yvv+Yrur+Y uv+

+Y8uZ8-fCDh(U) (u+Er) ju+ErjdE (3)

IzC +mxG(u)+ur) =Ntj+NV÷rur+N'uv÷NBu 28-

-0.5QfC• (U) (u +tr) l.+ErjtdE (4)

In equation 3 the terms Yj, Yj represent the change in the

lateral force due to unit changes in the angular acceleration

i and the lateral translational acceleration v, respectively.

Likewise, the terms Y,, Y, represent the change in the lateral

force due to unit changes in the corresponding velocities v

and r. The terms Nk, N4, N,, N, in equation 4 are defined

similarly. CD is the drag coefficient and 8 is the rudder

angle. The NPS AUV II is equipped with both stern and bow

rudder which are identical in size and are deflected in

opposite directions for maximum maneuverability. In other

wcrds

8,=8. bb=-8 (5)

where 8, is the stern rudder angle, and 8b the bow rudder

angle. The cross flow integral drag terms in the equations of

motion become important for hovering operations or low speed

maneuvering, whereas at high speeds u the steering response is

predominantly linear.

To complete the model, we need the expressions for the

vehicle yaw rate

4



*r (6)

and the inertial position rates

x=ucosT - vsinT , (7)

k-usinT v•osT , (8)

where 6. is the vehicle heading angle as shown in Figure 1.

Although it is recognized that the steering gear is both rate

and angle limited, steering gear dynamics are not included in

the formulation since they are much faster than the dynamics

of a turning vehicle. The methods presented in the following

sections can easily accommodate such modifications if desired.

The surge velocity u is clearly affected during the trim

due to the added drag in turning. For the purposes of this

study, it is assumed to be constant. This is a valid

approximation since experimental experience has shown that the

propulsion control law is in general capable of keeping the

forward speed u relatively constant at the commanded value.

5
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Ill. CONTROL ZAMI DESIGN

A. LINEARIZATION

As was mentioned in the previous chapter, during regular

cruising operations at about 2 ft/sec forward speed, the

nonlinear term in the equations of motion 3 and 4 are small

and, therefore, effective control can be maintained by using

their linear form

m(i 5 +ur+xGf) =Ytt+Y yý÷+Yrur+YZuv+ Y6u 28. (9)

IZr+mxG(i+ur) =Ntt+N,ýXr+Nrur+N'uv+Nau2 5. (10)

After some algebra, equations 9 and 10 can be put into

state space form as

vr = a,,uv+a12 ur+blu 2 8, (11)

t = a 2 1uv+a22ur-b2 u2 8, (12)

where

Da 1 1 = (Iz-Nt) Yv- (mxG-Yf) Nv

Da12 = (Iz-N) (m-VY) -(mXG-y) (Nd-mxG)

Da21 = (m-Yd) NI- (mxg-N"I) Yv,

Da 22 = (m-Yd) (Nr-mxG) - (mxG-NWv) (YI-m)

Dbl = (I,-N±) Y8- (mxG- Y.) Na,

7



Db2 = (m-Y,) N - (mxG--Iiv) Ya,

D = (IZ-Nt) (M- Y) - (mxG-Yd) (mxG-NV)

Equations 11 and 12 describe the lateral dynamics of the

vehicle for small motions.

S. FEEDBACK CONTROL

A linear rudder feedback control law based on equations 11

and 12 has the form

8 = kvv+krr, (13)

where k,, k, are the feedback gains. By substituting equation

13 into 11 and 12 we get the closed loop dynamics equations

ý, = (a 1,u+bju 2kv) v+ (a1 2 u+blu2k1 ) r, (14)

t = (a 2 1 u+b2 u2kv) v+ (a 22 u+b2 u 2k1 )r (15)

The characteristic equation of 14 and 15 is

; 2 +A1 1+A2 = 0, (16)

where

Al = [all+a22 + (blkv+b2kr) U] U,

A2 [ aa 2 2-a 1 2a2l1 + (ba 22-b 2a1 2) ukv+ (b 2a 11 -bla 21 ) uk.] u 2 .

Now the desired closed loop characteristic equation is

8



X2+a A+a2 = 0 (17)

By equating the coefficients of eqs.16 and 17 we get the

following system of linear equations

k ,b±U2 +krbýU2 = -Q1- (all+a22 ) u, (18)

kv(a 22b 1 -alb 2 ) u 3 +k, (aiib2 -a 2ib1) u 3 = a 2 _ (19)
- (alla2U-a12a21 ) u2

Equations 18 and 19 then determine the gain k,, k,, in the

feedback control law (Eq.13).

The coefficients a., O2 of the desired characteristic

equation 17 can be specified according to any standard pole

placement design technique. In this work we decide to use the

controller time constant, T,, as the parameter that specifies

the coefficients , a2- In this way the desired

characteristic equation is

(x+-L) =0 Or X2+ 2 - 1 =0 (20)

and comparing with eq.17 we see that

2 (21)

C T2

Specification of a controller time constant T, then

determines the feedback gains k,, ký uniquely.

9



C. FYEDFORWARD CONTROL

The control law (Eq.13) guarantees stability of v = r = o

of equations 11 and 12, in other words straight line motion at

an arbitrary heading. When the commanded angular velocity r.,

is nonzero the control law is slightly modified to

8 = kvv+kr (r-rc) +kcr,, (22)

where r., is the commanded turning rate and k,, is the

feedforward gain. This is computed based on steady state

accuracy requirements. At steady state, equations 11 and 12

yield

v = vJC , 8 = 8crc (23)

where

vc- biaz2-b'a2, 8c- azla12-alia22 (24)b2all blazI b2alibia2l u

Substituting equations 23 and 24 into equation 23, and

requiring that r = r, at steady state, we can solve for k.,

kc = 8c-kvvc, (25)

and the control law (Eq.22) becomes

8-kvv+k~r- (k,-8+kvvc) rc (26)

Substituting the values of k,, 8,, k,, v, in (26), we can

finally write the control law (Eq.26) in the form

10



8 = kvv+krr-k oa 2r, (27)

where

k 0 = 1(2)

(b2a 11 -bla 21 ) u 3

With the above feed forward gain the control law is

complete. It should be mentioned that all gains K,, kr, ko

depend explicitly on the forward speed u and are, therefore,

continuously updated every time a different forward speed is

commanded.

D. RESULTS

The response of the control law (Eq.27) applied to the

system of Equations 11 and 12 is shown in Figure 2, where the

commanded turning rate is 0.1 rad/sec. It can be seen that

the actual vehicle turning rate r converges to its commanded

value r,, as expected. The gain were computed based on a

selected time constant T, = 1 dimensionless second. Time is

nondimensionalized here with respect to the vehicle forward

speed u = 2 ft/sec and the vehicle length L = 7.3 ft.

Therefore, one dimensionless second corresponds to 3.65

seconds of real time and this is verified by the simulation

results of Figure 2 (the response drops about 60% every time

constant).

The response for different time constants (in

dimensionless seconds) is shown in Figure 3 where it can be

11



seen that higher values of To, result in slower vehicle

response as expected. Similar is the rudder angle response as

shown in Figure 4. Smaller values of T., result in tighter

control and more rudder activity.

R. ACCURACY

The feedforward gain k0 computed from eq.28 ensures that

the steady state turning rate r equals the commanded value r,

for the linear system of equations 11 and 12. To analyze the

effects of nonlinearities we start with the nonlinear

equations of motion 3 and 4 and we write them in the for!'

v= a1 1uv+a12ur+biu2 +d, (v, r), (29)

t = a12uv+a22ur+b 2u 28+dr (v,r), (30)

DdV(v,r)=-0.5QCD[(Iz-N±)I+(Y±-mxG)I],

Ddr(v,r)=-0.5QCD[(m-Yl)]Il+I+(NI-mxzG)Iz]

D= (IZ-Nt) (m-ZY) - (mxG-Y.) (mxG-N,)

/11=fh (t) (v + r) Iv+ tr Idt

12 =fh(U) (v÷ tr) Iv÷tr I tdt

The values of v and r at steady state can then be computed

from

12
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a11uv+a12 ur+b1u 28+d'(v, r) =0 , (31)

a2,uv+a, 2ur +b2u28 +d, (v, r) =0 , (32)

8-kvv-krr+koar2 r,=O (33)

The solution to these equations is not r = r, unless d, =

, - 0. This is demonstrated by the time simulation of Figure

5, for which the quadratic drag coefficient CD was set equal

to 0.5. It can be seen that the vehicle turning rate develops

a nonzero steady state error with respect to the commanded

value of 0.1 rad/sec. As the controller time constant T, is

decreased, the control law becomes tighter and this steady

state error could not become zero due to uncertainties in the

vehicle hydrodynamic description and various unmodeled

dynamics. Even if k0 were determined from equations 31 to 33

such that r = r., the uncertainties involved in the

determination of the hydrodynamic coefficients in the

equations of motion would cause the actual value of r to be

different than the commanded value ra. One way to ensure

steady state accuracy is to abandon the use of the feedforward

gain k0 and to introduce integral control. This possibility

is examined in the next section.

16



0.3

0.25-

0.2- 2

0.5 0.

0.05

0 5 10 15 20 25 30 35 40

Ume (sec)

ri g u r. 5. T u r n i n g R a t e R e s p o n s e fo r D i f f e r e n t V a l u e s o f T 0 a n d fo r

Nonzero Drag Coefficient.

17



F. INTEGRAL CONTROL

An alternative way to ensure stability and convergence to

the commanded value r. is to introduce integral control in the

form

8=kvv+kr (r -rc) +k f (r-r) dt (34)

In that case, the system of state equations is augmented

by the additional

Sr-re. (35)

In order to compute the gains k.,, k., k, we set r, = 0 and

substitute the control law

8 =kvv+krr+kirl , (36)

into equations 11 and 12. The resulting closed loop system is

ý'= (allu+kvbJu 2 ) v+ (azu+krblu2 ) r+krbu 2ri (37)

t= (a 2 1u+kvb2u 2 ) v+ (a.2u+krb 2u 2 ) r+klrb 2u2r, (38)

t'z = r (39)

The characteristic equation of equations 37 to 39 can be

computed as

A3 +A1 A2+a 2 +a3 = 0 (40)

where

18



Al=- (a 11 +a 22 ) u-bu 2k -b 2 u 2k 1 ,

A 2 = (ajja22 -a 21a 12 ) u 2+ (ajlb2 -a21bd) u 3k,+
+ (a2 2b1 -a 1 2b 2 ) U3kv-b 2u 2ki

A3 -- (ajnb 2 -a 21b,) u3 k1 .

If the desired characteristic equation is

X3 +a(I2 +a 2A +a 3 =0 (41)

by equating the coefficients of equations 40 and 41 we get the

following system of linear equations which determines the

three gains k., k,, kj:

kvbiu2 4krb2 u2=-al- (all+a22 ) U

k,(a22b 1 -a1 2b 2) u3 +kr (alb 2 -a 21bi) u 3 =a2 +kb 2 u 2

- (a1 1a. 2 -a 21 a1 2 ) u 2 ,

k, (ajjb2 -a 21 bj) u 3 =a3

For a time constant T, and an integrator time constant TI,

the desired characteristic equation becomes

(+ L)2 (,x+ )=0

or

1 2 1 2 + 1T, Tý T TIT, T,-T

so that

19



T, T,

2=1 +2
T'2 T172T,

1

T' TjT

With these choices the determination of the gain k,, kr,

k,, is complete. A numerical simulation for r. = 0.1 rad/sec.

and with C. = 0.5 is presented in Figure 6. The time

constants are T, = 1 and T1 assumed the three different values

shown in the figure. It can be seen that despite the

nonlinear drag terms, steady state accuracy is achieved.

Since the response of systems compensated by integral control

action tends to be more oscillatory, in this work we will use

the previous feedforward control. As we show in the next

chapter, steady state accuracy is guaranteed once the control

law is combined with a suitable guidance.

20



integral control
0.12

0.1

0.08-

0.4-

v 0..02

-0.08 *Tc/

0 5 10 15 20 25 30 35 .40

time (see)

figrur* 6. Turning Rate Response for T,-l, Different Values of T,,
Nonzero Drag Coefficient, and Use of Integral Control.

21



IV. GUIDANCE LAN

A. GENERAL

The previously developed control law is able to deliver a

vehicle commanded turning rate r.. In order to achieve path

control to a commanded route in the horizontal plane, however,

the commanded turning rate r, must be appropriately selected.

This constitutes the guidance law design. Two such guidance

laws are described in the following, cross track error and

proportional guidance. Without loss of generality, we assume

that the commanded path is a straight line. This is not a

very restrictive assumption since every smooth path can be

discretized into a series of straight line segments as

accurately as desired.

B. CROSS TRACK ERROR GUIDANCE

The guidance law is based solely on kinematics, whereas

vehicle dynamics are handled by the control law. Guidance law

development based on

= rc (42)

= usin* , (43)

where ra is the commanded turning rate and the lateral

velocity v is assumed to be zero in equation 43.

Cross track error guidance is achieved by

22



re= k#*+kyy (44)

By substituting equation 44 into equation 42 we get the

closed loop guidance system

S = kl4+k,*4 (45)

= usinr , (46)

The characteristic equation of equations 45 and 46 is

obtained by making the small angle approximation sinV = V, and

is

A=-kX-kyu = 0 (47)

If the desired characteristic equation is

= 0 , (48)

the guidance law gains k., k. are obtained by equating the

coefficients of equations 47 and 48

k,t= -P1  ( 49)

ky -P 2  (50)
U

Analogously to the control law design, if the time control

of the guidance law is selected to be T,, then equations 49

and 50 result in

-k (51)

23



ky -- -- 1 (52)

Selection of T. then determines Ic,, k. directly.

Although this development followed the small angle

approximation, it is not difficult to see that negative values

of k., and k. will guarantee stability of the nonlinear system

of equations 45 and 46. The associated total energy of the

system is

"E(i,40 -1 -kyu('-cos*) (53)

which can be viewed as the sum of kinetic and potential

energy. Using equation 45, this is written as

E _(,y) 1 (k,4r+kyy) 2-kyu(i-cos*) (54)

We note that E (V,y) provides a Liapunov function for equations

45 and 46, since E(0,0)=O at the unique equilibrium

(i,y)=(O,O) and E(V,y)>O for (V,y)*(O,O), because ky<0

Moreover, we have

dEx + dEdy dE- dE. (55)d-* •d-t dy × t -• d•÷-y

Evaluating the indicated partial derivatives we get

dE -(k,* +kYy) k,-kyusin, , (56)
dE

dE= (kT, +kyy) ky (57)
dy2

24



Substituting equations 45, 46, 56 and 57 into equation 55

we find

E=k, (kt* +kyy) 2 o(58)

which is negative. Therefore, Liapunov's theorem guarantees

asymptotic stability of the nonlinear system (equations 45 and

46).

C. PROPORTIONAL GUIDANCE

A typical orientation based guidance law is pursuit

guidance which is accomplished as follows: The commanded

vehicle heading angle V equals the line of sight angle

between the vehicle and a target point D located ahead of the

vehicle and a constant preview distance d on the nominal

straight line path as shown in Figure 1. In other words

,= -tan -a • (59)

In a proportional guidance scheme a time constant T is

incorporated in the above line of sight equation

T*C+, = -tan-1y (60)

and we arrive at the proportional guidance which is used here

for path control

TrC+÷ = -tan-'•Y (61)

25



r =-l--Itan-'- (62)

The linearized form of equation 62 is

1 1(63)

and by comparing it to equations 48 through 50 we can see that

it corresponds to a guidance characteristic equation with

-l -•, (64)

Ta
2 6 (65)
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V. STABILITY

A. SIMULATIONS

In order to assess stability of the combined guidance and

control law we proceed first by a series of numerical

integrations. The simulations are based on the dynamical

equations 3 and 4 and the kinematic equations 6 and 8. The

rudder control law in the form of equation 27 is used, while

the cross track error guidance (eq.44) is employed. Results

are presented in terms of the lateral deviation y in ft versus

time t in seconds. Figure 7 shows the vehicle response for

control time constant T.=0.5 and guidance time constant T,=1.

It can be seen that the response is stable, although it

exhibits slow convergence characteristics to the commanded

path y=0. To speed-up speed of response we could lower the

guidance time constant T.. The results of the simulation for

T,=0.5 and Td- 0 .5 are presented in Figure 8. It can be seen

that the convergence is now faster although the path overshoot

is higher. If we maintain the same guidance time constant

T.=O.5 and increase the control time constant To=2, the vehicle

is unstable as demonstrated by Figure 9. The response

exhibits now oscillatory characteristics or a limit cycle.

The explanation for this phenomenon is that, in this case the

control law is very slow and the rudder cannot follow the
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commanded turning rates by the guidance law which is

considerably faster, due to its smaller time constant. To

remedy this instability we should either lower T, as in Figure

8 demonstrated, or increase the value of T.. The results of

this simulation are shown in Figure 10, for which T.=2 and

T6=2. The response exhibits now characteristics of a damped

oscillation and is stable, although convergence is very slow

and oscillatory.

B. STABILITY

The previous simulation results show that there exists a

certain range of (T,, Tj) combinations that results in stable

response. In order to compute this range and verify the

numerical integration results, we use the linearized equations

of motion

(66)

=--a11uv+a12 ur +b u 28, (67)

r=a21 uv+a22ur+b2u 28, (68)

,=u*+v (69)

the rudder control law

8 =kvv+krr-kCU2.rC8 (70)

and the turning rate guidance law

rc=k. +kyy. (71)

28



In a compact vector notation the linearized equations of

motion 66 through 71 are written as

X=AX, X v, r,y] (72)

Motion stability is established by the eigenvalues of

matrix A, if all eigenvalues have negative real parts the

nominal straight line motion is dynamically stable, while if

at least one eigenvalue of A is positive, the system is

unstable. Writing out the characteristic equation of equation

72 we get

X4 +BX3 +CX2+D+E=0, (73)

where

B=al ,(74)

C=U 2- (b432 +b2 ul 1) uka 2 , (75)

D=a 2P1 +dlga2P 2 , (76)

E=aA(2 , (77)

and

-b+bza12-biazz (78)(bzaa1-baza ) u"

In the derivation of expressions 74 to 78 we have used

equations 18 and 19 for the feedback gains, equation 28 for

the feedforward gain, and equations 49 and 50 for the general

guidance law gains.
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If we apply Routh's criterion to the fourth order equation

73 we can find the following critical condition for stability

BCD-B 2 E-D 2 >0 (79)

If we substitute equations 74 through 77 in equation 79,

we find the following condition

1'- (L (l+d 1 P2)- P 2  (80)

-- 2 ( U1+d1P2 )2 •0

Equation 80 represents in algebraic form the critical

condition for stability in terms of the control law

characteristic equation coefficients x1, a2 and the guidance

law coefficients P., 02- It can be used for both the cross

track error and the proportional guidance schemes, if we

employ the appropriate expressions for 01, 02 from Chapter IV.

For the case of cross track error guidance, equation 80

results in

2 [T 2 - (b, +2b 2TGu) uk.] (2 TG+dl) (81)
4 T'G (2TG+dl) 2

For a given guidance law time constant T., equation 81

specifies the critical control time constant for stability.

Stability of the combined guidance and control scheme is

guaranteed for values of T, that are less than the critical

value computed from equation 81. For T. values above the

critical value (eq.80) the system is unstable. In these

cases, one pair of complex conjugate eigenvalues of matrix A
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in equation 72 has positive real parts, and as a result the

response of the system is oscillatory.

A plot of the critical stability condition (Eq.81) is

shown in Figure 11. the response is stable for (T,, T,)

combinations that lie below the critical curve. The number 1

through 4 on the figure correspond to the four numerical

simulations that were presented in Figure 7 through 10,

respectively. It can be seen that the simulation results agree

with the stability analysis performed in this section. Point

3 is located above the critical curve and the results in the

unstable oscillatory response observed in Figure 9.
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VI. CONCLUSIONS AND RZCOMEZNDATIONS

The goal of this work, stability analysis of turning rate

guidance and control for autonomous vehicles has been

achieved. The control law was based on the dynamic equations

in sway and yaw. The feedback gains were analytically

computed by pole-placement techniques and the feedforward gain

was evaluated based on the desired steady-state accuracy.

The guidance laws that were utilized, cross-track error or

proportional guidance, were based on the kinematics relations.

It was found that unless the guidance and control laws were

designed according to certain conditions, stability of the

system was not guaranteed. These stability conditions were

computed analytically and the results were verified by

numerical simulations. Recommendations for future work

include an analysis of the performance of turning-rate

guidance and control from the point of view of sensitivity to

sensor noise, state estimation, and disturbance rejection.

Comparisons with other guidance and control laws, such as line

of-sight guidance, should also be performed.
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